Active Self-Paced Learning for Cost-Effective and Progressive Face Identification
نویسندگان
چکیده
منابع مشابه
Cost-Effective Active Learning for Melanoma Segmentation
We propose a novel Active Learning framework capable to train effectively a convolutional neural network for semantic segmentation of medical imaging, with a limited amount of training labeled data. Our contribution is a practical CostEffective Active Learning approach using dropout at test time as Monte Carlo sampling to model the pixel-wise uncertainty and to analyze the image information to ...
متن کاملDeep self-paced learning for person re-identification
Person re-identification (Re-ID) usually suffers from noisy samples with background clutter and mutual occlusion, which makes it extremely difficult to distinguish different individuals across the disjoint camera views. In this paper, we propose a novel deep selfpaced learning (DSPL) algorithm to alleviate this problem, in which we apply a self-paced constraint and symmetric regularization to h...
متن کاملSelf-Paced Curriculum Learning
Curriculum learning (CL) or self-paced learning (SPL) represents a recently proposed learning regime inspired by the learning process of humans and animals that gradually proceeds from easy to more complex samples in training. The two methods share a similar conceptual learning paradigm, but differ in specific learning schemes. In CL, the curriculum is predetermined by prior knowledge, and rema...
متن کاملCost-Effective Active Learning from Diverse Labelers
In traditional active learning, there is only one labeler that always returns the ground truth of queried labels. However, in many applications, multiple labelers are available to offer diverse qualities of labeling with different costs. In this paper, we perform active selection on both instances and labelers, aiming to improve the classification model most with the lowest cost. While the cost...
متن کاملMulti-view Self-Paced Learning for Clustering
Exploiting the information from multiple views can improve clustering accuracy. However, most existing multi-view clustering algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and missing data. To overcome this problem, we present a new multi-view self-paced learning (MSPL) algorithm for clustering, that learns the multi-view ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2018
ISSN: 0162-8828,2160-9292
DOI: 10.1109/tpami.2017.2652459